Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res Bull ; 206: 110860, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38143008

RESUMO

Forkhead box A1 (FOXA1), a member of the forkhead family of transcription factors, plays a crucial role in the development of various organ systems and exhibits neuroprotective properties. This study aims to investigate the effect of FOXA1 on Parkinson's disease (PD) and unravel the underlying mechanism. Transcriptome analysis of PD was conducted using three GEO datasets to identify aberrantly expressed genes. A mouse model of PD was generated by injecting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), resulting in reduced FOXA1 expression. FOXA1 decline was also observed in 1-methyl-4-phenylpyridinium-treated SH-SY5Y cells. Artificial upregulation of FOXA1 improved motor abilities of mice according to rotarod and pole tests, and it mitigated tissue damage, cell loss, and neuronal damage in the mouse substantia nigra or in vitro. FOXA1 was found to bind to the neurofibromin 1 (NF1) promoter, thereby inducing its transcription and inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. Further experimentation revealed that silencing NF1 in mice or SH-SY5Y cells counteracted the neuroprotective effects of FOXA1. In conclusion, this research suggests that FOXA1 activates NF1 transcription and inactivates the MAPK signaling pathway, ultimately ameliorating neuronal damage and motor disability in PD. The findings may offer novel ideas in the field of PD management.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Transtornos Motores/tratamento farmacológico , Neuroblastoma/metabolismo , Neurofibromina 1/metabolismo , Neurofibromina 1/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/metabolismo , Ativação Transcricional
2.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446180

RESUMO

Ginsenosides are major bioactive compounds found in Panax ginseng that exhibit various pharmaceutical properties. Dammarenediol-II, the nucleus of dammarane-type ginsenosides, is a promising candidate for pharmacologically active triterpenes. Dammarenediol-II synthase (DDS) cyclizes 2,3-oxidosqualene to produce dammarenediol-II. Based on the native terpenoids synthetic pathway, a dammarane-type ginsenosides synthetic pathway was established in Chlamydomonas reinhardtii by introducing P. ginseng PgDDS, CYP450 enzyme (PgCYP716A47), or/and Arabidopsis thaliana NADPH-cytochrome P450 reductase gene (AtCPR), which is responsible for producing dammarane-type ginsenosides. To enhance productivity, strategies such as "gene loading" and "culture optimizing" were employed. Multiple copies of transgene expression cassettes were introduced into the genome to increase the expression of the key rate-limiting enzyme gene, PgDDS, significantly improving the titer of dammarenediol-II to approximately 0.2 mg/L. Following the culture optimization in an opt2 medium supplemented with 1.5 mM methyl jasmonate under a light:dark regimen, the titer of dammarenediol-II increased more than 13-fold to approximately 2.6 mg/L. The C. reinhardtii strains engineered in this study constitute a good platform for the further production of ginsenosides in microalgae.


Assuntos
Chlamydomonas reinhardtii , Ginsenosídeos , Panax , Triterpenos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Triterpenos/metabolismo , Panax/genética
3.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203567

RESUMO

The sesquiterpene alkaloid dendrobine, widely recognized as the main active compound and a quality control standard of medicinal orchids in the Chinese Pharmacopoeia, demonstrates diverse biological functions. In this study, we engineered Dendrobium catenatum as a chassis plant for the production of dendrobine through the screening and pyramiding of key biosynthesis genes. Initially, previously predicted upstream key genes in the methyl-D-erythritol 4-phosphate (MEP) pathway for dendrobine synthesis, including 4-(Cytidine 5'-Diphospho)-2-C-Methyl-d-Erythritol Kinase (CMK), 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase (DXR), 2-C-Methyl-d-Erythritol 4-Phosphate Cytidylyltransferase (MCT), and Strictosidine Synthase 1 (STR1), and a few downstream post-modification genes, including Cytochrome P450 94C1 (CYP94C1), Branched-Chain-Amino-Acid Aminotransferase 2 (BCAT2), and Methyltransferase-like Protein 23 (METTL23), were chosen due to their deduced roles in enhancing dendrobine production. The seven genes (SG) were then stacked and transiently expressed in the leaves of D. catenatum, resulting in a dendrobine yield that was two-fold higher compared to that of the empty vector control (EV). Further, RNA-seq analysis identified Copper Methylamine Oxidase (CMEAO) as a strong candidate with predicted functions in the post-modification processes of alkaloid biosynthesis. Overexpression of CMEAO increased dendrobine content by two-fold. Additionally, co-expression analysis of the differentially expressed genes (DEGs) by weighted gene co-expression network analysis (WGCNA) retrieved one regulatory transcription factor gene MYB61. Overexpression of MYB61 increased dendrobine levels by more than two-fold in D. catenatum. In short, this work provides an efficient strategy and prospective candidates for the genetic engineering of D. catenatum to produce dendrobine, thereby improving its medicinal value.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Engenharia Metabólica , Metabolismo Secundário , Alcaloides/genética
4.
Mar Drugs ; 20(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135766

RESUMO

Eukaryotic green microalgae show considerable promise for the sustainable light-driven biosynthesis of high-value fine chemicals, especially terpenoids because of their fast and inexpensive phototrophic growth. Here, the novel isopentenol utilization pathway (IUP) was introduced into Chlamydomonas reinhardtii to enhance the hemiterpene (isopentenyl pyrophosphate, IPP) titers. Then, diphosphate isomerase (IDI) and limonene synthase (MsLS) were further inserted for limonene production. Transgenic algae showed 8.6-fold increase in IPP compared with the wild type, and 23-fold increase in limonene production compared with a single MsLS expressing strain. Following the culture optimization, the highest limonene production reached 117 µg/L, when the strain was cultured in a opt2 medium supplemented with 10 mM isoprenol under a light: dark regimen. This demonstrates that transgenic algae expressing the IUP represent an ideal chassis for the high-value terpenoid production. The IUP will facilitate further the metabolic and enzyme engineering to enhance the terpenoid titers by significantly reducing the number of enzyme steps required for an optimal biosynthesis.


Assuntos
Chlamydomonas reinhardtii , Engenharia Metabólica , Chlamydomonas reinhardtii/metabolismo , Difosfatos/metabolismo , Hemiterpenos/metabolismo , Isomerases/metabolismo , Limoneno/metabolismo , Pentanóis , Terpenos/metabolismo
5.
BMC Genomics ; 23(1): 612, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999493

RESUMO

BACKGROUND: Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. ß-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing ß-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS: To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION: The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.


Assuntos
Alcaloides , Celulases , Dendrobium , Plantas Medicinais , Alcaloides/metabolismo , Celulases/genética , Dendrobium/genética , Dendrobium/metabolismo , Flavonoides/metabolismo , Filogenia , Plantas Medicinais/química , Polissacarídeos/metabolismo
6.
Planta ; 255(6): 111, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35478059

RESUMO

MAIN CONCLUSION: Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.


Assuntos
Jatropha , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
7.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255510

RESUMO

DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.


Assuntos
Proteínas de Arabidopsis/genética , Frutas/genética , Jatropha/genética , Fosfolipases A1/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Jatropha/crescimento & desenvolvimento , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
8.
Onco Targets Ther ; 13: 11337-11346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177841

RESUMO

BACKGROUND: Bladder cancer has long been recognized as one of the most common and aggressive human malignant carcinomas due to the increased invasiveness and metastasis. The discovery and development of natural compounds from Dendrobium species for cancer therapy have garnered increasing attention in recent years. Among those natural elements, the bibenzyl compound gigantol has promising therapeutic potential against several cancer cell lines; however, its roles on bladder tumor metastasis have not been investigated. MATERIALS AND METHODS: Here in this in vitro study, we utilized viability tests, cell migration, cell invasion and apoptosis assays to evaluate the anti-tumor activity of gigantol on three human bladder cancer cell lines (SW780, 5637, and T24) and a normal human bladder cell line (SVHUC-1). Cells were treated with different concentrations of gigantol (0, 40, 80, and 160 µM) for 24, 48 and 72 h. RESULTS: Here in this study, we showed that gigantol suppressed cancer cell proliferation but not normal SVHUC-1 cells. The inhibitory effect of the compound on cell migration and invasion was also exhibited in the cancer cell lines. Cell apoptosis assay by flow cytometry revealed enhanced apoptotic effects of gigantol on cancer cells. Gene expression analysis revealed that Wnt/EMT signaling might involve in the response of bladder cancer cells to gigantol. CONCLUSION: Therefore, the present data demonstrate gigantol as a strong anticancer reagent against bladder cancer possibly through Wnt/EMT signaling.

9.
Plant Reprod ; 33(3-4): 191-204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32997187

RESUMO

KEY MESSAGE: ABCE model genes along with genes related to GA biosynthesis and auxin signalling may play significant roles in male flower development in Jatropha curcas. Flowering plants exhibit extreme reproductive diversity. Jatropha curcas, a woody plant that is promising for biofuel production, is monoecious. Here, two gynoecious Jatropha mutants (bearing only female flowers) were used to identify key genes involved in male flower development. Using comparative transcriptome analysis, we identified 17 differentially expressed genes (DEGs) involved in floral organ development between monoecious plants and the two gynoecious mutants. Among these DEGs, five floral organ identity genes, Jatropha AGAMOUS, PISTILLATA, SEPALLATA 2-1 (JcSEP2-1), JcSEP2-2, and JcSEP3, were downregulated in ch mutant inflorescences; two gibberellin (GA) biosynthesis genes, Jatropha GA REQUIRING 1 and GIBBERELLIN 3-OXIDASE 1, were downregulated in both the ch and g mutants; and two genes involved in the auxin signalling pathway, Jatropha NGATHA1 and STYLISH1, were downregulated in the ch mutant. Furthermore, four hub genes involved in male flower development, namely Jatropha SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, CRYPTOCHROME 2, SUPPRESSOR OF OVEREXPRESSION OF CO 1 and JAGGED, were identified using weighted gene correlation network analysis. These results suggest that floral organ identity genes and genes involved in GA biosynthesis and auxin signalling may participate in male flower development in Jatropha. This study will contribute to understanding sex differentiation in woody perennial plants.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Inflorescência , Jatropha , Proteínas de Plantas , Transcriptoma , Flores/genética , Inflorescência/genética , Inflorescência/metabolismo , Jatropha/genética , Jatropha/metabolismo , Proteínas de Plantas/genética
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(5): 693-697, 2020 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-32897217

RESUMO

OBJECTIVE: To analyze the accuracy and positive rate of ultrasound-guided fine-needle aspiration (US-FNA) cytology for detecting suspected thyroid cancer nodules of different sizes. METHODS: A total of 591 patients with 594 suspected malignant thyroid nodules received examinations with US-FNA cytology. Based on their size, the nodules were divided into group I (4-5 mm), group II (6-10 mm), group III (>10 mm). With the results of pathology as the standard, we analyzed the results of US-FNA cytology for detecting thyroid carcinoma in terms of its accuracy, indeterminate rate, positive predictive value and negative predictive value for nodules of different sizes. RESULTS: The positive rates in group I, group II and group III were 39.2% (40/102), 48.2% (172/357) and 65.2% (88/135), respectively, similar between groups I and II (P=0.107) and differed significantly between groups I and III (P=0.000) and between groups II and III (P=0.001). The accuracy, indeterminate rate, positive predictive value and negative predictive value in the 3 groups were 95.5% (21/22), 97.1% (100/103), and 94.4% (51/54); 2.9% (3/102), 2.8% (10/357), and 1.5% (2/135); 100%, 100%, and 98%; 66.7%, 57.1%, and 33.3%, respectively, showing no significant differences among the 3 groups. CONCLUSIONS: The size of the thyroid nodules can affect the positive rate but does not have significant effects on the accuracy, indeterminate rate, positive predictive value or negative predictive value of US-FNA cytology.


Assuntos
Nódulo da Glândula Tireoide , Biópsia por Agulha Fina , Humanos , Estudos Retrospectivos , Neoplasias da Glândula Tireoide , Ultrassonografia de Intervenção
11.
Front Plant Sci ; 11: 391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411153

RESUMO

Many plants of Dendrobium genus are precious traditional herbs with high commercial value and excellent medicinal effects. They are perennial aerophytes or epiphytes of terrestrial orchids growing on cliffs and tree trunks covered with mosses in forests throughout the tropical and subtropical Asia and eastern Australia. The stem contains a variety of bioactive components, including polysaccharides and alkaloids, with strong antioxidant, neuroprotective, and immunomodulatory effects. Great attention has been drawn to the Dendrobium genus regarding its medicinal effectiveness, and the related researches have been accumulating rapidly in recent years. The bioactive components are mainly the intermediates or final products produced in specialized metabolite biosynthesis. Thus far, the activity, molecular structure, and composition of major medicinal ingredients have been partially elucidated, and the sequencing of several transcriptomes has been starting to shed new light on the biosynthesis regulation mechanism. This paper reviewed the advances of researches concerning the biosynthetic pathways of medicinal specialized metabolites from Dendrobium, especially the large number of related genes, with the hope of further promoting the development and utilization of those components and correspondingly protecting the Dendrobium resources in more effective ways.

12.
Gigascience ; 9(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32048715

RESUMO

BACKGROUND: Chromatin architecture is an essential factor regulating gene transcription in different cell types and developmental phases. However, studies on chromatin architecture in perennial woody plants and on the function of chromatin organization in sex determination have not been reported. RESULTS: Here, we produced a chromosome-scale de novo genome assembly of the woody plant Jatropha curcas with a total length of 379.5 Mb and a scaffold N50 of 30.7 Mb using Pacific Biosciences long reads combined with genome-wide chromosome conformation capture (Hi-C) technology. Based on this high-quality reference genome, we detected chromatin architecture differences between monoecious and gynoecious inflorescence buds of Jatropha. Differentially expressed genes were significantly enriched in the changed A/B compartments and topologically associated domain regions and occurred preferentially in differential contact regions between monoecious and gynoecious inflorescence buds. Twelve differentially expressed genes related to flower development or hormone synthesis displayed significantly different genomic interaction patterns in monoecious and gynoecious inflorescence buds. These results demonstrate that chromatin organization participates in the regulation of gene transcription during the process of sex differentiation in Jatropha. CONCLUSIONS: We have revealed the features of chromatin architecture in perennial woody plants and investigated the possible function of chromatin organization in Jatropha sex differentiation. These findings will facilitate understanding of the regulatory mechanisms of sex determination in higher plants.


Assuntos
Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Jatropha/genética , Cromatina/química , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Jatropha/crescimento & desenvolvimento
13.
BMC Plant Biol ; 19(1): 468, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684864

RESUMO

BACKGROUND: In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L., a perennial woody plant belonging to Euphorbiaceae. RESULTS: Two inflorescence branching mutants were identified in germplasm collection of Jatropha. The duo xiao hua (dxh) mutant has a seven-order branch inflorescence, and the gynoecy (g) mutant has a three-order branch inflorescence, while WT Jatropha has predominantly four-order branch inflorescence, occasionally the three- or five-order branch inflorescences in fields. Using weighted gene correlation network analysis (WGCNA), we identified several hub genes involved in the cytokinin metabolic pathway from modules highly associated with inflorescence phenotypes. Among them, Jatropha ADENOSINE KINASE 2 (JcADK2), ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (JcAPT1), CYTOKININ OXIDASE 3 (JcCKX3), ISOPENTENYLTRANSFERASE 5 (JcIPT5), LONELY GUY 3 (JcLOG3) and JcLOG5 may participate in cytokinin metabolic pathway in Jatropha. Consistently, exogenous application of cytokinin (6-benzyladenine, 6-BA) on inflorescence buds induced high-branch inflorescence phenotype in both low-branch inflorescence mutant (g) and WT plants. These results suggested that cytokinin is an important regulator in controlling inflorescence branching in Jatropha. In addition, comparative transcriptome analysis showed that Arabidopsis homologous genes Jatropha AGAMOUS-LIKE 6 (JcAGL6), JcAGL24, FRUITFUL (JcFUL), LEAFY (JcLFY), SEPALLATAs (JcSEPs), TERMINAL FLOWER 1 (JcTFL1), and WUSCHEL-RELATED HOMEOBOX 3 (JcWOX3), were differentially expressed in inflorescence buds between dxh and g mutants and WT plants, indicating that they may participate in inflorescence development in Jatropha. The expression of JcTFL1 was downregulated, while the expression of JcLFY and JcAP1 were upregulated in inflorescences in low-branch g mutant. CONCLUSIONS: Cytokinin is an important regulator in controlling inflorescence branching in Jatropha. The regulation of inflorescence architecture by the genes involved in floral development, including TFL1, LFY and AP1, may be conservative in Jatropha and Arabidopsis. Our results provide helpful information for elucidating the regulatory mechanism of inflorescence architecture in Jatropha.


Assuntos
Citocininas/metabolismo , Redes Reguladoras de Genes , Genes de Plantas , Inflorescência/crescimento & desenvolvimento , Jatropha/genética , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Inflorescência/genética , Jatropha/crescimento & desenvolvimento , Mutação , Proteínas de Plantas/genética
14.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052421

RESUMO

Trehalose-6-phosphate (T6P) phosphatase (TPP), a dephosphorylating enzyme, catalyzes the dephosphorylation of T6P, generating trehalose. In Jatropha, we found six members of the TPP family. Five of them JcTPPA, JcTPPC, JcTPPD, JcTPPG, and JcTPPJ are highly expressed in female flowers or male flowers, or both, suggesting that members of the JcTPP family may participate in flower development in Jatropha. The wide expression of JcTPPJ gene in various organs implied its versatile roles and thus was chosen for unraveling its biological functions during developmental process. We constructed an overexpression vector of JcTPPJ cDNA driven by the cauliflower mosaic virus (CaMV) 35S promoter for genetic transformation. Compared with control Arabidopsis plants, 35S:JcTPPJ transgenic Arabidopsis plants presented greater sucrose contents in their inflorescences and displayed late-flowering and heterostylous phenotypes. Exogenous application of sucrose to the inflorescence buds of wild-type Arabidopsis repressed the development of the perianth and filaments, with a phenocopy of the 35S:JcTPPJ transgenic Arabidopsis. These results suggested that the significantly increased sucrose level in the inflorescence caused (or induced) by JcTTPJ overexpression, was responsible for the formation of heterostylous flower phenotype. However, 35S:JcTPPJ transgenic Jatropha displayed no obvious phenotypic changes, implying that JcTPPJ alone may not be sufficient for regulating flower development in Jatropha. Our results are helpful for understanding the function of TPPs, which may regulate flower organ development by manipulating the sucrose status in plants.


Assuntos
Arabidopsis/genética , Expressão Ectópica do Gene , Flores/genética , Jatropha/genética , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Jatropha/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sacarose/metabolismo
15.
Mitochondrial DNA B Resour ; 4(2): 3711-3712, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33366155

RESUMO

Neocinnamomum delavayi (Lec.) Liou is a kind of medicinal plants belonging to the genus Neocinnamomum H. Liu, but is often confused with N. mekongense (Hand.-Mazz.) Kosterm. Here, the complete plastid sequence of the N. delavayi was determined. The length of the plastid genome is 150,584 bp with overall AT content of 61%. It exhibited a typical quadripartite structure comprising a large single copy region (LSC) of 91,887 bp, a small single copy region (SSC) of 18,443 bp, and a pair of inverted repeat regions (IRs) of 20,262 bp each. Maximum likelihood phylogenetic analysis with GTR + F+R2 model was performed using eighteen complete plastomes of the Lauraceae, which strongly supports the relationships: sisterhood of the N. delavayi and a clade containing N. mekongense and N. lecomtei Liou.

16.
Sci Rep ; 8(1): 8844, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891996

RESUMO

Lindera, a core genus of the Lauraceae family, has important economic uses in eastern Asia and North America. However, its historical diversification has not been clarified. In this study, we report nine newly sequenced Lindera plastomes. The plastomes of these nine Lindera species range from 152,211 (L. nacusua) to 152,968 bp (L. metcalfiana) in length, similar to that of another Lauraceae species, Litsea glutinosa (152,618 bp). The length variation of these plastomes derived from the length variation in the loci ycf1, ycf2, ψycf1, and ndhF-ψycf1. Comparing our sequences with other available plastomes in the Lauraceae indicated that eight hypervariable loci, ihbA-trnG, ndhA, ndhF-rpl32, petA-psbJ, psbK-psbI, rps16, trnS-trnG, and ycf1, could serve as DNA barcodes for species delineation, and that the inverted repeats (IRs) showed contraction/expansion. Further phylogenetic analyses were performed using 32 complete plastomes of Lauraceae and seven barcodes from 14 additional species of Lindera and related species in the core Lauraceae. The results showed that these Lindera species grouped into two or four sub-clades, and that two Litsea species and Laurus nobilis were located in the same sub-clade as five Lindera species. These data support a close relationship between the genera Laurus, Lindera, and Litsea, and suggest that Lindera is polyphyletic.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos , Lindera/classificação , Lindera/genética , Filogenia , China , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Genes de Cloroplastos , Variação Genética , Genômica , Análise de Sequência de DNA
17.
Contrast Media Mol Imaging ; 2018: 2630480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853804

RESUMO

32P high-dose rate brachytherapy allows high-dose radiation delivery to target lesions with less damage to adjacent tissues. The early evaluation of its therapeutic effect on tumours is vital for the optimization of treatment regimes. The most commonly used 32P-CP colloid tends to leak with blind therapeutic area after intratumour injection. We prepared 32P-chromic phosphate-polylactide-co-glycolide (32P-CP-PLGA) seeds with biodegradable PLGA as a framework and investigated their characteristics in vitro and in vivo. We also evaluated the therapeutic effect of 32P-CP-PLGA brachytherapy for glioma with the integrin αvß3-targeted radiotracer 68Ga-3PRGD2. 32P-CP-PLGA seeds (seed group, SG, 185 MBq) and 32P-CP colloid (colloid group, CG, 18.5 MBq) were implanted or injected into human glioma xenografts in nude mice. Scanning electron microscopy (SEM) of the seeds, micro-SPECT imaging, and biodistribution studies were performed at different time points. The tumour volume was measured using a caliper, and 68Ga-3PRGD2 micro-PET-CT imaging was performed to evaluate the therapeutic effect after 32P intratumour administration. The delayed release of 32P-CP was observed with biodegradation of vehicle PLGA. Intratumoural effective half-life of 32P-CP in the SG (13.3 ± 0.3) d was longer than that in the CG (10.4 ± 0.3) d (P < 0.05), with liver appearance in the CG on SPECT. A radioactivity gradient developed inside the tumour in the SG, as confirmed by micro-SPECT and SEM. Tumour uptake of 68Ga-3PRGD2 displayed a significant increase on day 0.5 in the SG and decreased earlier (on day 2) than the volume reduction (on day 8). Thus, 32P-CP-PLGA seeds, controlling the release of entrapped 32P-CP particles, are promising for glioma brachytherapy, and 68Ga-3PRGD2 imaging shows potential for early response evaluation of 32P-CP-PLGA seeds brachytherapy.


Assuntos
Braquiterapia/métodos , Glioma/terapia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Compostos Radiofarmacêuticos/química , Animais , Compostos de Cromo , Meia-Vida , Xenoenxertos , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Fosfatos , Radioisótopos de Fósforo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
18.
Sci Rep ; 8(1): 1321, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358729

RESUMO

Wheat straw (WS) is a potential biomass for production of monomeric sugars. However, the enzymatic hydrolysis ratio of cellulose in WS is relatively low due to the presence of lignin and hemicellulose. To enhance the enzymatic conversion of WS, we tested the impact of three different pretreatments, e.g. sulfuric acid (H2SO4), sodium hydroxide (NaOH), and hot water pretreatments to the enzymatic digestions. Among the three pretreatments, the highest cellulose conversion rate was obtained with the 4% NaOH pretreatment at 121 °C (87.2%). In addition, NaOH pretreatment was mainly effective in removing lignin, whereas the H2SO4 pretreatment efficiently removed hemicellulose. To investigate results of pretreated process for enhancement of enzyme-hydolysis to the WS, we used scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to analyze structural changes of raw and treated materials. The structural analysis indicated that after H2SO4 and NaOH pretreatments, most of the amorphous cellulose and partial crystalline cellulose were hydrolyzed during enzymatic hydrolysis. The findings of the present study indicate that WS could be ideal materials for production of monomeric sugars with proper pretreatments and effective enzymatic base hydrolysis.


Assuntos
Biomassa , Celulose/análogos & derivados , Triticum/química , Biocatálise , Hidrólise , Hidróxido de Sódio/química , Ácidos Sulfúricos/química
19.
Sci Rep ; 7(1): 11417, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900192

RESUMO

Cytokinin (CK) is the primary hormone that positively regulates axillary bud outgrowth. However, in many woody plants, such as Jatropha curcas, gibberellin (GA) also promotes shoot branching. The molecular mechanisms underlying GA and CK interaction in the regulation of bud outgrowth in Jatropha remain unclear. To determine how young axillary buds respond to GA3 and 6-benzyladenine (BA), we performed a comparative transcriptome analysis of the young axillary buds of Jatropha seedlings treated with GA3 or BA. Two hundred and fifty genes were identified to be co-regulated in response to GA3 or BA. Seven NAC family members were down-regulated after treatment with both GA3 and BA, whereas these genes were up-regulated after treatment with the shoot branching inhibitor strigolactone. The expressions of the cell cycle genes CDC6, CDC45 and GRF5 were up-regulated after treatment with both GA3 and BA, suggesting they may promote bud outgrowth via regulation of the cell cycle machinery. In the axillary buds, BA significantly increased the expression of GA biosynthesis genes JcGA20oxs and JcGA3ox1, and down-regulated the expression of GA degradation genes JcGA2oxs. Overall, the comprehensive transcriptome data set provides novel insight into the responses of young axillary buds to GA and CK.


Assuntos
Compostos de Benzil/farmacologia , Perfilação da Expressão Gênica , Giberelinas/farmacologia , Jatropha/efeitos dos fármacos , Jatropha/fisiologia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Purinas/farmacologia , Transcriptoma , Biologia Computacional/métodos , Metabolismo Energético , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 235-240, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665191

RESUMO

Pyrene excimer usually serves as a chromogenic unit for developing ratiometric fluorescent sensors. But this study used excimer as a large hydrophobic group to regulate the molecular hydrophobicity, and obtained a new fluorescent sensor, N, N-bi[4(1-pyrene)-butyroyl]ornithine (1), for detection and removal of Fe3+ and Pb2+ from aqueous solutions. The coordination of 1 and Fe3+ in the aqueous solution or even pure water forms removable flocculent precipitates, accompanied by obvious fluorescent quenching of emission spectra. In aqueous solutions containing 40% (v/v) acetonitrile, the special responses exhibit a high selectivity and sensitivity to Fe3+ over other common metal ions. However, in aqueous solutions containing 40% (v/v) dimethylsulfoxide, the probe exhibits the analogous fluorescent quenching responses and the removable flocculent precipitates in the presence Fe3+ and Pb2+. These results indicate that the extremely hydrophobic 1-Fe3+/Pb2+ complexes are not only a supplement to the fluorescent sensing of Fe3+ and Pb2+, but also a requirement to the removal of Fe3+ and Pb2+ from aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...